Cognitive Behavior Classification From Scalp EEG Signals
نویسندگان
چکیده
منابع مشابه
Classification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کاملImage Based Approach for Cognitive Classification Using Eeg Signals
The EEG state classifier distinguishes different states and these information are used to understand the normal and abnormal states of users and to adapt their interfaces and add new functionalities. EEG classification is performed conventionally by extracting statistical parameters. But, this classification is affected more by artifacts and hence a better approach using image based is proposed...
متن کاملDirect Brain-computer Communication through Scalp Recorded Eeg Signals
Scalp recorded electroencephalogram signals (EEG) reflect the combined synaptic and axonal activity of groups of neurons. In addition to their clinical applications, EEG signals can be used as support for direct brain-computer communication devices (Brain-Computer Interfaces BCIs). Indeed, during the performance of mental activities, EEG patterns that characterize them emerge. If actions execut...
متن کاملEpileptic event forewarning from scalp EEG.
The authors present a model-independent approach to quantify changes in the dynamics underlying nonlinear time-serial data. From time-windowed datasets, the authors construct discrete distribution functions on the phase space. Condition change between base case and test case distribution functions is assessed by dissimilarity measures via L1 distance and chi2 statistic. The discriminating power...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Systems and Rehabilitation Engineering
سال: 2018
ISSN: 1534-4320,1558-0210
DOI: 10.1109/tnsre.2018.2797547